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Abstract. The hypre software library is being developed with the aim of providing scalable
solvers for the solution of large, sparse linear systems on massively parallel computers. To this end,
the notion of conceptual interfaces was introduced. These interfaces give applications users a more
natural means for describing their linear systems, and provide access to methods such as geometric
multigrid which require additional information beyond just the matrix. This paper discusses the
design of the conceptual interfaces in hypre and illustrates their use with various examples. A brief
overview of the solvers and preconditioners available through these interfaces is also given.

1. Introduction. The increasing demands of computationally challenging ap-
plications and the advance of larger more powerful computers with more complicated
architectures have necessitated the development of new solvers and preconditioners.
Since the implementation of these methods is quite complex, the use of high perfor-
mance libraries with the newest efficient solvers and preconditioners becomes more
important for promulgating their use into applications with relative ease.

hypre [10, 13] has been designed with the primary goal of providing users with
advanced scalable parallel preconditioners. Issues of robustness, ease of use, flexibility
and interoperability have also been important. It can be used both as a solver package
and as a framework for algorithm development. Its object model is more general and
flexible than the current generation of solver libraries [6]. hypre also provides several of
the most commonly used solvers, such as conjugate gradient for symmetric systems or
GMRES for nonsymmetric systems to be used in conjunction with the preconditioners.

Design innovations have been made to enable access to the library in the way that
applications users naturally think about their problems. For example, application de-
velopers that use structured grids, typically think of their problems in terms of stencils
and grids. hypre’s users do not have to learn complicated sparse matrix structures;
instead hypre does the work of building these data structures through various concep-

tual interfaces. The conceptual interfaces currently implemented include stencil-based
structured / semi-structured interfaces, a finite-element based unstructured interface,
and a traditional linear-algebra based interface.

The primary focus of this paper is on the design and use of the conceptual inter-
faces in hypre. Implementation and performance of these interfaces will be discussed
in a future paper. However, the reader should note that parallel implementations of
these interfaces exist and are already being used in many application codes. In Sec-
tion 2, we introduce and motivate the idea of conceptual interfaces. In Sections 3, 4, 5,
and 6, we describe each of the four interfaces available in hypre with various examples
illustrating their use. Particular attention is given to the new semi-structured grid
interface, where both a block-structured grid example and a structured adaptive mesh
refinement (AMR) example are given. Section 7 is a brief overview of the solvers and
preconditioners currently available in hypre. Section 8 gives additional information
on how to obtain and build the library. The paper concludes with some comments on
future plans to enhance the library.

2. Conceptual Interfaces. Each application to be implemented lends itself to
natural ways of thinking of the problem. If the application uses structured grids, a
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natural way of formulating it would be in terms of grids and stencils, whereas for
an application that uses unstructured grids and finite elements it is more natural to
access the preconditioners and solvers via elements and element stiffness matrices.
Consequently the provision of various interfaces facilitates the use of the library.

Conceptual interfaces also decrease the coding burden for users. The most com-
mon interface used in libraries today is a linear-algebraic one. This interface requires
that the user compute the mapping of their discretization to row-column entries in a
matrix. This code can be quite complex; for example, consider the problem of ordering
the equations and unknowns on the composite grids used in structured AMR codes.
The use of a conceptual interface merely requires the user to input the information
that defines the problem to be solved, leaving the forming of the actual linear system
as a library implementation detail hidden from the user.

Another reason for conceptual interfaces—maybe the most compelling one—is
that they provide access to a large array of powerful scalable linear solvers that need
the extra information beyond just the matrix. For example, geometric multigrid
(GMG) cannot be used through a linear-algebraic interface, since it is formulated in
terms of grids. Similarly, in many cases, these interfaces allow the use of other data
storage schemes with less memory overhead and provide for more efficient computa-
tional kernels.

Fig. 2.1 illustrates the idea of conceptual interfaces. The level of generality in-
creases from left to right. On the left are specific interfaces with algorithms and
data structures that take advantage of more specific information. On the right are
more general interfaces, algorithms and data structures. Note that the more specific
interfaces also give users access to general solvers like algebraic multigrid (AMG) or
incomplete LU factorization (ILU). The top row shows various concepts: structured
grids, composite grids, unstructured grids or just plain matrices. In the second row,
various solvers and preconditioners are listed. Each of these requires different in-
formation from the user, which is provided through the conceptual interfaces. For
example, GMG needs a structured grid and can only be used with the leftmost in-
terface. AMGe [2], an algebraic multigrid method, needs finite element information,
whereas general solvers can be used with any interface. The bottom row contains
a list of data layouts or matrix / vector storage schemes that can be used for the
implementation of the various algorithms. The relationship between linear solver and
storage scheme is similar to that of interface and linear solver.

In hypre, four conceptual interfaces are currently supported: a structured-grid
interface, a semi-structured-grid interface, a finite-element interface, and a linear-
algebraic interface. For the purposes of this paper, we will refer to these interfaces
by the names Struct, semiStruct, FEI, and IJ, respectively; the actual names of
the interfaces in hypre are slightly different. Similarly, when interface routines are
discussed below, we will not strictly adhere to the prototypes in hypre, as these
prototypes may change slightly in the future in response to user needs. Instead, we
will focus on the basic design components and basic use of the interfaces, and refer
the reader to the hypre documentation [13] for current details.

Note that hypre does not partition the problem, but builds the internal parallel
data structures (often quite complicated) according to the partitioning of the appli-
cation that the user provides.

3. The Structured-Grid Interface (Struct). The Struct interface is ap-
propriate for scalar applications on structured grids with a fixed stencil pattern of
nonzeros at each grid point. It provides access to hypre’s most efficient scalable
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Fig. 2.1. Graphic illustrating the notion of conceptual interfaces.
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Fig. 3.1. A box is a collection of abstract cell-centered indices, described by its minimum and
maximum indices. Here, two boxes are illustrated.

solvers for scalar structured-grid applications, the geometric multigrid methods SMG
and PFMG. The user defines the grid and the stencil; the matrix and right-hand-side
vector are then defined in terms of the grid and the stencil.

The Struct grid is described via a global d-dimensional index space, i.e. via
integer singles in 1D, tuples in 2D, or triples in 3D (the integers may have any value,
positive or negative). The global indices are used to discern how data is related
spatially, and how it is distributed across the parallel machine. The basic component
of the grid is a box: a collection of abstract cell-centered indices in index space,
described by its “lower” and “upper” corner indices (see Figure 3.1). The scalar
grid data is always associated with cell centers, unlike the more general semiStruct
interface which allows data to be associated with box indices in several different ways.
Each process describes the portion of the grid that it “owns”, one box at a time. Note
that it is assumed that the data has already been distributed, and that it is handed
to the library in this distributed form.

The stencil is described by an array of integer indices, each representing a relative
offset (in index space) from some gridpoint on the grid. For example, the geometry
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Fig. 4.1. An example block-structured grid, distributed across many processes.

of the standard 5-pt stencil can be represented in the following way:





(0, 1)
(−1, 0) (0, 0) (1, 0)

(0,−1)



 .(3.1)

After the grid and stencil are defined, the matrix coefficients are set using the
MatrixSetBoxValues() routine with the following arguments: a box specifying where
on the grid the stencil coefficients are to be set; a list of stencil entries indicating which
coefficients are to be set (e.g., the “center”, “south”, and “north” entries of the 5-point
stencil above); and the actual coefficient values.

4. The Semi-Structured-Grid Interface (semiStruct). The semiStruct in-
terface is appropriate for applications with grids that are mostly—but not entirely—
structured, e.g. block-structured grids (see Fig. 4.1), composite grids in structured
AMR applications, and overset grids. In addition, it supports more general PDEs
than the Struct interface by allowing multiple variables (system PDEs) and multiple
variable types (e.g. cell-centered, face-centered, etc.). The interface provides access
to data structures and linear solvers in hypre that are designed for semi-structured
grid problems, but also to the most general data structures and solvers.

The semiStruct grid is composed out of a number of structured grid parts, where
the physical inter-relationship between the parts is arbitrary. Each part is constructed
out of two basic components: boxes (see Section 3) and variables. Variables represent
the actual unknown quantities in the grid, and are associated with the box indices in
a variety of ways, depending on their types. In hypre, variables may be cell-centered,
node-centered, face-centered, or edge-centered. Face-centered variables are split into
x-face, y-face, and z-face, and edge-centered variables are split into x-edge, y-edge,
and z-edge. See Figure 4.2 for an illustration in 2D.

The semiStruct interface uses a graph to allow nearly arbitrary relationships
between part data. The graph is constructed from stencils plus some additional
data-coupling information set by the GraphAddEntries() routine. Another method
for relating part data is the GridSetNeighborbox() routine, which is particularly
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(i, j)

Fig. 4.2. Grid variables in hypre are referenced by the abstract cell-centered index to the left
and down in 2D (and analogously in 3D). So, in the figure, index (i, j) is used to reference the
variables in black. The variables in grey, although contained in the pictured cell, are not referenced
by the (i, j) index.

suited for block-structured grid problems. Several examples are given in the following
sections to illustrate these concepts.

4.1. Block-Structured Grids. In this section, we describe how to use the
semiStruct interface to define block-structured grid problems. We will do this pri-
marily by example, paying particular attention to the construction of stencils and the
use of the GridSetNeighborbox() interface routine.

Consider the solution of the diffusion equation

−∇ · (D∇u) + σu = f(4.1)

on the block-structured grid in Figure 4.3, where D is a scalar diffusion coefficient,
and σ ≥ 0. The discretization [19] introduces three different types of variables: cell-
centered, x-face, and y-face. The three discretization stencils that couple these vari-
ables are given in Figure 4.4. The information in these two figures is essentially all
that is needed to describe the nonzero structure of the linear system we wish to solve.
Traditional linear solver interfaces require that this information first be translated
to row-column entries of a matrix by defining a global ordering of the unknowns.
This translation process can be quite complicated, especially in parallel. For exam-
ple, face-centered variables on block boundaries are often replicated on two different
processes, but they should only be counted once in the global ordering. In contrast,
the semiStruct interface enables the description of block-structured grid problems in
a way that is much more natural.

Two primary steps are involved for describing the above problem: defining the
grid (and its associated variables) in Figure 4.3, and defining the stencils in Figure 4.4.
The grid is defined in terms of five separate logically-rectangular parts as shown in
Figure 4.5, and each part is given a unique label between 0 and 4. Each part consists
of a single box with lower index (1, 1) and upper index (4, 4) (see Section 3), and the
grid data is distributed on five processes such that data associated with part p lives
on process p. Note that in general, parts may be composed out of arbitrary unions
of boxes, and indices may consist of non-positive integers (see Figure 3.1). Also note
that the semiStruct interface expects a domain-based data distribution by boxes, but
the actual distribution is determined by the user and simply described (in parallel)
through the interface.

For simplicity, we restrict our attention to the interface calls made by process 3.
Each process describes through the interface only the grid data that it owns, so
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Fig. 4.3. Block-structured grid example with five logically-rectangular blocks and three variables
types: cell-centered, x-face, and y-face.

Fig. 4.4. Discretization stencils for the cell-centered (left), x-face (middle), and y-face (right)
variables for the block-structured grid example in Figure 4.3.

process 3 needs to describe the data pictured in Figure 4.6. That is, it describes
part 3 plus some additional neighbor information that ties part 3 together with the
rest of the grid. To do this, the GridSetExtents() routine is first called, passing it the
lower and upper indices on part 3, (1, 1) and (4, 4). Next, the GridSetVariables()
routine is called, passing it the number of variables on part 3, 3, and the three variable
types: cell-centered, x-face, and y-face.

At this stage, the description of the data on part 3 is complete. However, the
spatial relationship between this data and the data on neighboring parts is not yet
defined. To do this, we need to relate the index space for part 3 with the index spaces
of parts 2 and 4. More specifically, we need to tell the interface that the two grey
boxes neighboring part 3 in Figure 4.6 also correspond to boxes on parts 2 and 4. To
do this, two calls are made to the GridSetNeighborbox() routine. We will discuss
only the first call, which describes the grey box on the right of the figure. Note that
this grey box lives outside of the box extents for the grid on part 3, but it can still be
described using the index-space for part 3 (recall Figure 3.1). That is, the grey box
has extents (1, 0) and (4, 0) on part 3’s index-space, which is outside of part 3’s grid.
The arguments for the GridSetNeighborbox() call are simply the lower and upper
indices on part 3, (1, 0) and (4, 0), and the corresponding indices on part 2, (1, 1) and
(1, 4). The final argument to the routine indicates that the x-direction on part 3 (i.e.,
the i component of the tuple (i, j)) corresponds to the y-direction on part 2 and that
the y-direction on part 3 corresponds to the x-direction on part 2.
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Fig. 4.5. Assignment of parts and indices to the block-structured grid example in Figure 4.3.
In this example, the data for part p lives on process p.
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Fig. 4.6. Grid information given to the semiStruct interface by process 3 for the example in
Figure 4.3. The shaded boxes are used to relate part 3 to parts 2 and 4.

With this neighbor information, it is now possible to determine where off-part
stencil entries couple. Take, for example, any shared part boundary such as the
boundary between parts 2 and 3. Along these boundaries, some stencil entries reach
outside of the part. If no neighbor information is given, these entries are effectively
zeroed out, i.e., they don’t participate in the discretization. However, with the ad-
ditional neighbor information, when a stencil entry reaches into a neighbor box it is
then coupled to the part described by that neighbor box information.

An important consequence of the use of the GridSetNeighborbox() routine is
that it can declare variables on different parts as being the same. For example,
consider the highlighted face variable at the bottom of Figure 4.6. This is a single
variable that lives on both part 2 and part 1. Note that process 3 cannot make this
determination based solely on the information in the figure; it must use additional
information on other processes. Also note that a variable may be of different types on
different parts. Take for example the face variables on the boundary of parts 2 and 3.
On part 2 they are x-face variables, but on part 3 they are y-face variables.

The grid is now complete and all that remains to be done is to describe the stencils
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Fig. 4.7. Assignment of labels and geometries to the y-face stencil in Figure 4.4. Stencil
geometries are described relative to the (0, 0) index for the “center” of the stencil.

in Figure 4.4. For brevity, we consider only the description of the y-face stencil, i.e.
the third stencil in the figure. To do this, the stencil entries are assigned unique
labels between 0 and 8 and their “geometries” are described relative to the “center”
of the stencil. This process is illustrated in Figure 4.7. Nine calls are made to the
routine StencilSetEntry(). As an example, the call that describes stencil entry 5
in the figure is given the entry number 5, the offset (−1, 0), and the identifier for the
x-face variable (the variable to which this entry couples). Recall from Figure 4.2 the
convention used for referencing variables of different types. The geometry description
uses the same convention, but with indices numbered relative to the referencing index
(0, 0) for the stencil’s center.

With the above, we now have a complete description of the nonzero structure for
the matrix. The matrix coefficients are then easily set using the MatrixSetValues()
routine in a manner similar to what is described in Sections 3 and 4.2. See the hypre
documentation [13] for details.

An alternative approach for describing the above problem through the interface is
to use the GraphAddEntries() routine instead of the GridSetNeighborbox() routine.
In this approach, the five parts are explicitly “sewn” together by adding non-stencil
couplings to the matrix graph (see Section 4.2 for more information on the use of this
routine). The main downside to this approach for block-structured grid problems is
that variables along block boundaries are no longer considered to be the same variables
on the corresponding parts that share these boundaries. For example, the face variable
at the bottom of Figure 4.6 would now represent two different variables that live on
different parts. To “sew” the parts together correctly, we need to explicitly select
one of these variables as the representative that participates in the discretization, and
make the other variable a dummy variable that is decoupled from the discretization
by zeroing out appropriate entries in the matrix.

4.2. Structured Adaptive Mesh Refinement. We now briefly discuss how
to use the semiStruct interface in a structured AMR application. Consider Poisson’s
equation on the simple cell-centered example grid illustrated in Figure 4.8. For struc-
tured AMR applications, each refinement level should be defined as a unique part.
There are two parts in this example: part 0 is the global coarse grid and part 1 is the
single refinement patch. Note that the coarse unknowns underneath the refinement
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Fig. 4.8. Structured AMR grid example. Shaded regions correspond to process 0, unshaded to
process 1. The grey dots are dummy variables.

patch (gray dots in Figure 4.8) are not real physical unknowns; the solution in this
region is given by the values on the refinement patch. In setting up the composite
grid matrix [18] for hypre the equations for these “dummy” unknowns should be un-
coupled from the other unknowns (this can easily be done by setting all off-diagonal
couplings to zero in this region).

In the example, parts are distributed across the same two processes with process
0 having the “left” half of both parts. For simplicity, we discuss the calls made by
process 0 to set up the composite grid matrix. First to set up the grid, process 0 will
make GridSetVariables() calls to set the number of variables, 1, and variable type,
cell-centered, and GridSetExtents() calls to identify the portion of the grid it owns
for each part: part 0 (1, 1) × (2, 4), part 1 (6, 6) × (7, 9). Note that in the interface
there is no required rule relating the indexing on refinement patch to that on the
global coarse grid; they are separate parts and thus each has its own index space. In
this example, we have chosen the indexing such that refinement cell (2i, 2j) lies in the
lower left quadrant of coarse cell (i, j). Then the stencil is set up. In this example we
are using a finite volume approach resulting in the standard 5-point stencil (offsets
(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)) in both parts.

The grid and stencil are used to define all intra-part coupling in the graph, the
non-zero pattern of the composite grid matrix. The inter-part coupling at the coarse-
fine interface is described by GraphAddEntries() calls. This coupling in the composite
grid matrix is typically the composition of an interpolation rule and a discretization
formula. In this example, we use a simple piecewise constant interpolation, i.e. the
solution value in a coarse cell is equal to the solution value at the cell center. Then
the flux across a portion of the coarse-fine interface is approximated by a difference
of the solution values on each side. As an example, consider approximating the flux
across the left interface of cell (6, 6) in Figure 4.9. Let h be the coarse grid mesh size,
and consider a local coordinate system with the origin at the center of cell (6, 6). We
approximate the flux as follows

∫ h/4

−h/4

ux(−h/4, s)ds ≈
h

2
ux(−h/4, 0) ≈

h

2

u(0, 0)− u(−3h/4, 0)

3h/4
(4.2)
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Fig. 4.9. Coupling for equation at corner of refinement patch. Black lines (solid and broken)
are stencil couplings. Gray line are non-stencil couplings.

≈
2

3
(u6,6 − u2,3).

The first approximation uses the midpoint rule for the edge integral, the second uses
a finite difference formula for the derivative, and the third the piecewise constant
interpolation to the solution in the coarse cell. This means that the equation for
the variable at cell (6, 6) involves not only the stencil couplings to (6, 7) and (7, 6)
on part 1 but also non-stencil couplings to (2, 3) and (3, 2) on part 0. These non-
stencil couplings are described by GraphAddEntries() calls. The syntax for this call
is simply the part and index for both the variable whose equation is being defined and
the variable to which it couples. After these calls, the non-zero pattern of the matrix
(and the graph) is complete. Note that the “west” and “south” stencil couplings
simply “drop off” the part, and are effectively zeroed out.

The remaining step is to define the actual numerical values for the composite grid
matrix. This can be done by either MatrixSetValues() calls to set entries in a single
equation, or by MatrixSetBoxValues() calls to set entries for a box of equations in
a single call. The syntax for the MatrixSetValues() call is a part and index for the
variable whose equation is being set and an array of entry numbers identifying which
entries in that equation are being set. The entry numbers may correspond to stencil
entries or non-stencil entries.

5. The Finite Element Interface (FEI). The finite element interface is ap-
propriate for users who form their systems from a finite element discretization. The
interface mirrors typical finite element data structures. For an example of the finite
element discretization of part of a sphere using quadrilateral elements see Figure 5.1.
Though this interface is provided in hypre, its definition was determined elsewhere
[7]. A brief summary of the actions required by the user is given below.

The use of this interface to build the underlying linear system requires two phases:
initialization and loading. During the initialization phase, the structure of the finite-
element data is defined. This requires the passing of control data that defines the
underlying element types and solution fields; data indicating how many aggregate
finite-element types will be utilized; element data, including element connectivity
information to translate finite-element nodal equations to systems of sparse algebraic
equations; control data for nodes that need special handling, such as nodes shared

10



Fig. 5.1. Finite element discretization of a sphere using quadrilateral elements.

among processes; and data to aid in the definition of any constraint relations local
to a given process. These definitions are needed to determine the underlying matrix
structure and allocate memory for the load step.

During the loading phase, the structure is populated with finite-element data ac-
cording to standard finite-element assembly procedures. Data passed during this step
includes: boundary conditions (essential, natural, and mixed boundary conditions);
element stiffness matrices and load vectors, passed as aggregate element set abstrac-
tions; and constraint relations, defined in terms of nodal algebraic weights and tables
of associated nodes.

After these two phases have been completed, two further phases are necessary
to obtain the solution. During the solution phase, the user needs to specify which
solvers should be used and which solver parameters should be set. In the final phase,
the user retrieves the solution.

For a more detailed description with specific function call definitions, the user is
referred to [7], the web site http://z.cz.sandia.goc/fei/ which contains information on
newer versions of the FEI, as well as the hypre user manual. The current FEI version
used in hypre is version 2.x, and comprises additional features not defined in [7].

The FEI differs from the Struct and semiStruct interfaces in two main aspects:
the grid and the discretization type. However, note that it would be easy to augment
both of these interfaces to more directly support finite element discretizations. That
is, instead of describing the discretization in terms of stencils, it would be described
in terms of finite-element stiffness matrices as in the FEI. This would allow solvers
to take advantage of both the structure present in the problem as well as the finite
element information. In particular, note that although the example grid in Figure
5.1 uses a finite element discretization, the grid itself is actually block-structured.
Augmenting the Struct and semiStruct interfaces as just described is an area of
future work of interest to the authors.
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6. The Linear-Algebraic Interface (IJ). The IJ interface is the traditional
linear-algebraic interface. Here, the user defines the right hand side and the matrix
in the general linear-algebraic sense, i.e. in terms of row and column indices. This
interface provides access only to the most general data structures and solvers and as
such should only be used when none of the grid-based interfaces is applicable.

As with the other interfaces in hypre, the IJ interface expects to get the data
in distributed form. Matrices are assumed to be distributed across p processes by
contiguous blocks of rows. That is, the matrix must be blocked as follows:











A0

A1

...
Ap−1











,(6.1)

where each submatrix Ak is “owned” by a single process k. Ak contains the rows
nk, nk + 1, ..., nk+1 − 1, where n0 is arbitrary (n0 is typically set to either 0 or 1).

First, the user creates an empty IJ matrix object on each process by specifying
the row extents, nk and nk+1 − 1. Next, the object type needs to be set. The object
type determines the underlying data structure. Currently only one data structure,
the ParCSR matrix data structure, is available. However, work is underway to add
other data structures. Additional data structures are desirable for various reasons,
e.g. to be able to link to other packages, such as PETSc. Also, if additional matrix
information is known, more efficient data structures are possible. For example, if
the matrix is symmetric, it would be advantageous to design a data structure that
takes advantage of symmetry. Such an approach could lead to a significant decrease
in memory usage. Another data structure could be based on blocks and thus make
better use of the cache. Small blocks could naturally occur in matrices derived from
systems of PDEs, and be processed more efficiently in an implementation of the nodal
approach for systems AMG.

After setting the object type, the user can give estimates of the expected row
sizes to increase efficiency. Providing additional detail on the nonzero structure and
distribution of the matrix can lead to even more efficiency, with significant savings in
time and memory usage. In particular, if information is given about how many column
indices are “local” (i.e., between nk and nk+1 − 1), and how many are not, both the
ParCSR and PETSc matrix data structures can take advantage of this information
during construction.

The matrix coefficients are set via the MatrixSetValues() routine, which allows
a great deal of flexibility (more than its typical counterpart routines in other linear
solver libraries). For example, one call to this routine can set a single coefficient, a row
of coefficients, submatrices, or even arbitrary collections of coefficients. However, each
process should only set those values that it “owns” according to the previously defined
row partitioning. This is accomplished with the following parameters, describing
which matrix coefficients are being set:

• nrows: the number of rows,
• ncols: the number of coefficients in each row,
• rows: the global indices of the rows,
• cols: the column indices of each coefficient,
• values: the actual values of the coefficients.

It is also possible to add values to the coefficients with the MatrixAddValues() call.
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Fig. 6.1. An example of a ParCSR matrix, distributed across 3 processes.

Figure 6.1 illustrates this for the example of an 11 × 11-matrix, distributed across
3 processes. Here, rows 1–4 reside on process 0, rows 5–8 on process 1 and rows 9–
11 on process 2. We now describe how to define the above parameters to set the
coefficients in the boxes in Figure 6.1.

On process 0, only one element a34 is to be set, which requires the following
parameters: nrows = 1, ncols = [1], rows = [3], cols = [4], values = [a34]. On
process 1, the third (local) row is defined with the parameters: nrows = 1, ncols =
[4], rows = [7], cols = [1,6,7,8], values = [a71, a76, a77, a78]. On process 2, the values
contained in two submatrices are to be set. This can be done by two subsequent calls
setting one submatrix at a time, or more generally, all of the values can be set in one
call with the parameters: nrows = 3, ncols = [1, 3, 2], rows = [9, 10, 11], cols =
[3, 4, 10, 11, 10, 11], values = [a93, a10,4, a10,10, a10,11, a11,10, a11,11].

7. Preconditioners and Solvers. The conceptual interfaces provide access to
several preconditioners and solvers in hypre (we will refer to them both as solvers in
the sequel, except when noted). Table 7.1 lists the current solver availability. We
expect to update this table continually in the future with the addition of new solvers
in hypre, and potentially with the addition of solvers in other linear solver packages
(e.g., PETSc). We also expect to update the Struct interface column, which should
be completely filled in.

Great efforts have been made to generate highly efficient codes. Of particular
concern has been the scalability of the solvers. Roughly speaking, a method is scalable

if the time required to produce the solution remains essentially constant as both the
problem size and the computing resources increase. All methods implemented here
are generally scalable per iteration step, the multigrid methods are also scalable with
regard to iteration count.

The solvers use MPI for parallel processing. Most of them have also been threaded
using OpenMP, making it possible to run hypre in a mixed message-passing / threaded
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Conceptual Interfaces

Solvers Struct semiStruct FEI IJ

Jacobi x
SMG x
PFMG x
Split x
BoomerAMG x x x
ParaSails x x x
PILUT x x x
Euclid x x x
PCG x x x x
GMRES x x x x
BiCGSTAB x x x x
Hybrid x x x x

Table 7.1

Current solver availability via hypre conceptual interfaces.

mode, of potential benefit on clusters of SMPs.

All of the solvers can be used as stand-alone solvers, except for ParaSails, Eu-
clid and PILUT which can only be used as preconditioners. For most problems, it
is recommended that one of the Krylov methods be used in conjunction with a pre-
conditioner. The Hybrid solver can be a good option for time-dependent problems,
where a new matrix is generated at each time step, and where the matrix properties
change over time (say, from being highly diagonally dominant to being weakly diago-
nally dominant). This solver starts with diagonal-scaled conjugate gradient (DSCG)
and automatically switches to multigrid-preconditioned conjugate gradient (where the
multigrid preconditioner is set by the user) if DSCG is converging too slowly. SMG
[21, 3] and PFMG [1, 9] are parallel semicoarsening methods, with the more robust
SMG using plane smoothing and the more efficient PFMG using pointwise smooth-
ing. The Split solver is a simple iterative method based on a regular splitting of the
matrix into its “structured” and “unstructured” components, where the structured
component is inverted using either SMG or PFMG. This is currently the only solver
that takes advantage of the structure information passed in through the semiStruct
interface, but solvers such as the Fast Adaptive Composite-Grid method (FAC) [18]
will also be made available in the future. BoomerAMG [12] is a parallel implementa-
tion of algebraic multigrid with various coarsening strategies [20, 8, 11] and smoothers
(including the conventional pointwise smoothers such as Jacobi, as well as more com-
plex smoothers such as ILU, sparse approximate inverse and Schwarz [22]). ParaSails
[4, 5] is a sparse approximate inverse preconditioner. PILUT [17] and Euclid [14, 15]
are ILU algorithms, where PILUT is based on Saad’s dual-threshold ILU algorithm,
and Euclid supports variants of ILU(k) as well as ILUT preconditioning.

After the matrix and right hand side are set up as described in the previous
sections, the preconditioner (if desired) and the solver are set up, and the linear
system can finally be solved. For many of the preconditioners and solvers, it might be
desirable to choose parameters other than the default parameters, e.g. the strength
threshold or smoother for BoomerAMG, a drop tolerance for PILUT, the dimension
of the Krylov space for GMRES, or convergence criteria, etc. These parameters are
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defined using Set() routines. Once these parameters have been set to the satisfaction
of the user, the preconditioner is passed to the solver with a SetPreconditioner()
call. After this has been accomplished, the problem is solved by calling first the
Setup() routine (this call may become optional in the future) and then the Solve()
routine. When this has finished, the basic solution information can be extracted using
a variety of Get() calls.

8. Additional Information. The hypre library can be downloaded by visiting
the hypre home page [13]. It can be built by typing configure followed by make.
There are several options that can be used with configure. For information on how to
use those, one needs to type configure --help. Although hypre is written in C, it
can also be called from Fortran. More specific information on hypre and how to use it
can be found in the users manual and the reference manual, which are also available
at the same URL.

9. Conclusions and Future Work. The introduction of conceptual interfaces
in hypre gives applications users a more natural means for describing their linear
systems, and provides access to an array of powerful linear solvers that require addi-
tional information beyond just the matrix. In this paper, the design and use of these
interfaces was discussed, paying particular attention to the new semi-structured grid
interface, where both a block-structured grid example and a structured adaptive mesh
refinement (AMR) example were given.

The hypre library contains a variety of scalable preconditioners and solvers. Nev-
ertheless, as new research leads to better and more efficient algorithms, new precon-
ditioners will be added and old preconditioners will be improved. On the list of new
solvers to be made available in hypre is AMGe, an algebraic multigrid method based
on the use of local finite element stiffness matrices [2, 16]. This method has proven
to be more robust and to converge faster than classical AMG for some problems, e.g.
elasticity problems. AMGe will be available directly through the FEI interface (and
potentially through updated Struct and semiStruct interfaces; see below). FAC [18]
is another solver that we would like to make available in the future. This solver is the
method of choice for many structured AMR application code developers.

The Struct and semiStruct interfaces are currently stencil-based, but it is possi-
ble to augment these interfaces to more directly support finite element discretizations.
This is another possible direction of future work.

Finally, although the semiStruct interface is currently only available in hypre,
plans are being made to separate the interface from the library, releasing it as a stand-
alone specification that other linear solver libraries can also implement and support.
In addition to the specification, a partial implementation will be released that library
writers can then build on.
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